80 lines
2.0 KiB
Agda
80 lines
2.0 KiB
Agda
{-# OPTIONS --no-import-sorts #-}
|
||
open import Agda.Primitive renaming (Set to Type)
|
||
open import Agda.Builtin.Nat
|
||
open import Agda.Builtin.List
|
||
|
||
data Bottom : Type where
|
||
|
||
¬ : Type → Type
|
||
¬ A = A → Bottom
|
||
|
||
Rel : Type → Type₁
|
||
Rel A = A → A → Type
|
||
|
||
record _×_ (A B : Type) : Type where
|
||
field
|
||
fst : A
|
||
snd : B
|
||
|
||
data Formula : Type where
|
||
⊥ : Formula
|
||
atom : Nat → Formula
|
||
∼_ : Formula → Formula
|
||
◇_ : Formula → Formula
|
||
□_ : Formula → Formula
|
||
_∧_ : Formula → Formula → Formula
|
||
_∨_ : Formula → Formula → Formula
|
||
_⇒_ : Formula → Formula → Formula
|
||
|
||
infixr 4 _⇒_
|
||
|
||
variable
|
||
X Y Z : Formula
|
||
|
||
_⇔_ : Formula → Formula → Formula
|
||
X ⇔ Y = (X ⇒ Y) ∧ (Y ⇒ X)
|
||
|
||
⊤ : Formula
|
||
⊤ = ∼ ⊥
|
||
|
||
Context : Type
|
||
Context = List Formula
|
||
|
||
variable
|
||
Γ : Context
|
||
|
||
infixl 10 _,_
|
||
pattern _,_ Γ X = X ∷ Γ
|
||
|
||
data _∈_ {A : Type} : A → List A → Type where
|
||
zero : (x : A) (xs : List A) → x ∈ (x ∷ xs)
|
||
succ : {y : A} (x : A) (xs : List A) → (x ∈ xs) → (x ∈ (y ∷ xs))
|
||
|
||
infixr 2 _⊢_
|
||
data _⊢_ : Context → Formula → Type where
|
||
var : X ∈ Γ → Γ ⊢ X
|
||
∧ᵢ : Γ ⊢ X → Γ ⊢ Y → Γ ⊢ X ∧ Y
|
||
∧ₑ₁ : Γ ⊢ X ∧ Y → Γ ⊢ X
|
||
∧ₑ₂ : Γ ⊢ X ∧ Y → Γ ⊢ Y
|
||
∨ᵢ₁ : Γ ⊢ X → Γ ⊢ X ∨ Y
|
||
∨ᵢ₂ : Γ ⊢ Y → Γ ⊢ X ∨ Y
|
||
∨ₑ : Γ ⊢ X ∨ Y → Γ , X ⊢ Z → Γ , Y ⊢ Z → Γ ⊢ Z
|
||
mp : Γ ⊢ X ⇒ Y → Γ ⊢ X → Γ ⊢ Y
|
||
⇒ᵢ : Γ , X ⊢ Y → Γ ⊢ X ⇒ Y
|
||
¬ᵢ : Γ , X ⊢ ⊥ → Γ ⊢ ∼ X
|
||
¬ₑ : Γ ⊢ X → Γ ⊢ ∼ X → Γ ⊢ ⊥
|
||
-- ¬¬ₑ : Γ ⊢ ¬ ¬ X → Γ ⊢ X
|
||
-- Unsure if i want classical logic
|
||
-- TODO: entailments for ◇ and □
|
||
|
||
record M (W : Type) : Type₁ where
|
||
field
|
||
R : Rel (W × W)
|
||
L : W → List Nat
|
||
|
||
infixr 2 _,_⊩_
|
||
data _,_⊩_ {W : Type} (Model : M W) (x : W) : Formula → Type where
|
||
top : Model , x ⊩ ⊤
|
||
atom : {p : Nat} → p ∈ (M.L Model x) → Model , x ⊩ atom p
|
||
-- TODO: The rest :D
|