lean/Example.lean
2025-01-30 19:04:57 +01:00

98 lines
2.6 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

variable (p q r : Prop)
-- commutativity of ∧ and
example : p ∧ q ↔ q ∧ p :=
Iff.intro (λ ⟨p,q⟩ => ⟨q,p⟩) (λ ⟨q,p⟩ => ⟨p,q⟩)
example : p q ↔ q p :=
Iff.intro
| Or.inl p => Or.inr p
| Or.inr q => Or.inl q)
| Or.inl q => Or.inr q
| Or.inr p => Or.inl p)
-- associativity of ∧ and
example : (p ∧ q) ∧ r ↔ p ∧ (q ∧ r) :=
Iff.intro
(λ ⟨⟨p,q⟩,r⟩ => ⟨p,⟨q,r⟩⟩)
(λ ⟨p,⟨q,r⟩⟩ => ⟨⟨p,q⟩,r⟩)
example : (p q) r ↔ p (q r) :=
Iff.intro
| Or.inr r => Or.inr (Or.inr r)
| Or.inl (Or.inr q) => Or.inr (Or.inl q)
| Or.inl (Or.inl p) => Or.inl p)
| Or.inl p => Or.inl (Or.inl p)
| Or.inr (Or.inl q) => Or.inl (Or.inr q)
| Or.inr (Or.inr r) => Or.inr r)
-- distributivity
example : p ∧ (q r) ↔ (p ∧ q) (p ∧ r) :=
Iff.intro
| ⟨p, Or.inl q⟩ => Or.inl ⟨p,q⟩
| ⟨p, Or.inr r⟩ => Or.inr ⟨p,r⟩)
| Or.inl ⟨p,q⟩ => ⟨p,Or.inl q⟩
| Or.inr ⟨p,r⟩ => ⟨p,Or.inr r⟩)
example : p (q ∧ r) ↔ (p q) ∧ (p r) :=
Iff.intro
| Or.inl p => ⟨Or.inl p, Or.inl p⟩
| Or.inr ⟨q,r⟩ => ⟨Or.inr q, Or.inr r⟩)
| ⟨Or.inr q, Or.inr r⟩ => Or.inr ⟨q,r⟩
| ⟨Or.inl p, _⟩ => Or.inl p
| ⟨ _, Or.inl p⟩ => Or.inl p)
-- other properties
example : (p → (q → r)) ↔ (p ∧ q → r) :=
Iff.intro
(λ f ⟨p,q⟩ => f p q)
(λ f p q => f ⟨p,q⟩)
example : ((p q) → r) ↔ (p → r) ∧ (q → r) :=
Iff.intro
(λ porqtor => And.intro (λ p => porqtor (Or.inl p)) (λ q => porqtor (Or.inr q)))
|⟨f, _⟩, Or.inl p => f p
|⟨_, g⟩, Or.inr q => g q)
example : ¬(p q) ↔ ¬p ∧ ¬q :=
Iff.intro
(λ nporq => And.intro (λ p => nporq (Or.inl p)) (λ q => nporq (Or.inr q)))
| ⟨np, _⟩, Or.inl p => np p
| ⟨_ ,nq⟩, Or.inr q => nq q)
example : ¬p ¬q → ¬(p ∧ q)
| Or.inl np, ⟨p,_⟩ => np p
| Or.inr nq, ⟨_,q⟩ => nq q
example : ¬(p ∧ ¬p) :=
λ ⟨p,np⟩ => np p
example : p ∧ ¬q → ¬(p → q) :=
λ ⟨p,nq⟩ ptoq => nq (ptoq p)
example : ¬p → (p → q) :=
λ np p => absurd p np
example : (¬p q) → (p → q)
| (Or.inl np), p => absurd p np
| (Or.inr q), _ => q
example : p False ↔ p :=
Iff.intro (λ porf => Or.elim porf id False.elim) (λ p => Or.inl p)
example : p ∧ False ↔ False :=
Iff.intro (λ ⟨_,f⟩ => f) (λ f => False.elim f)
example : (p → q) → (¬q → ¬p) :=
λ ptoq nq p => absurd (ptoq p) nq