lean/Example.lean

98 lines
2.6 KiB
Plaintext
Raw Normal View History

2025-01-30 17:37:49 +00:00
variable (p q r : Prop)
2025-01-29 22:07:02 +00:00
2025-01-30 17:37:49 +00:00
-- commutativity of ∧ and
2025-01-30 18:04:57 +00:00
example : p ∧ q ↔ q ∧ p :=
Iff.intro (λ ⟨p,q⟩ => ⟨q,p⟩) (λ ⟨q,p⟩ => ⟨p,q⟩)
example : p q ↔ q p :=
Iff.intro
| Or.inl p => Or.inr p
| Or.inr q => Or.inl q)
| Or.inl q => Or.inr q
| Or.inr p => Or.inl p)
2025-01-30 17:37:49 +00:00
-- associativity of ∧ and
2025-01-30 18:04:57 +00:00
example : (p ∧ q) ∧ r ↔ p ∧ (q ∧ r) :=
Iff.intro
(λ ⟨⟨p,q⟩,r⟩ => ⟨p,⟨q,r⟩⟩)
(λ ⟨p,⟨q,r⟩⟩ => ⟨⟨p,q⟩,r⟩)
example : (p q) r ↔ p (q r) :=
Iff.intro
| Or.inr r => Or.inr (Or.inr r)
| Or.inl (Or.inr q) => Or.inr (Or.inl q)
| Or.inl (Or.inl p) => Or.inl p)
| Or.inl p => Or.inl (Or.inl p)
| Or.inr (Or.inl q) => Or.inl (Or.inr q)
| Or.inr (Or.inr r) => Or.inr r)
2025-01-30 17:37:49 +00:00
-- distributivity
2025-01-30 18:04:57 +00:00
example : p ∧ (q r) ↔ (p ∧ q) (p ∧ r) :=
Iff.intro
| ⟨p, Or.inl q⟩ => Or.inl ⟨p,q⟩
| ⟨p, Or.inr r⟩ => Or.inr ⟨p,r⟩)
| Or.inl ⟨p,q⟩ => ⟨p,Or.inl q⟩
| Or.inr ⟨p,r⟩ => ⟨p,Or.inr r⟩)
example : p (q ∧ r) ↔ (p q) ∧ (p r) :=
Iff.intro
| Or.inl p => ⟨Or.inl p, Or.inl p⟩
| Or.inr ⟨q,r⟩ => ⟨Or.inr q, Or.inr r⟩)
| ⟨Or.inr q, Or.inr r⟩ => Or.inr ⟨q,r⟩
| ⟨Or.inl p, _⟩ => Or.inl p
| ⟨ _, Or.inl p⟩ => Or.inl p)
2025-01-30 17:37:49 +00:00
-- other properties
2025-01-30 18:04:57 +00:00
example : (p → (q → r)) ↔ (p ∧ q → r) :=
Iff.intro
(λ f ⟨p,q⟩ => f p q)
(λ f p q => f ⟨p,q⟩)
example : ((p q) → r) ↔ (p → r) ∧ (q → r) :=
Iff.intro
(λ porqtor => And.intro (λ p => porqtor (Or.inl p)) (λ q => porqtor (Or.inr q)))
|⟨f, _⟩, Or.inl p => f p
|⟨_, g⟩, Or.inr q => g q)
example : ¬(p q) ↔ ¬p ∧ ¬q :=
Iff.intro
(λ nporq => And.intro (λ p => nporq (Or.inl p)) (λ q => nporq (Or.inr q)))
| ⟨np, _⟩, Or.inl p => np p
| ⟨_ ,nq⟩, Or.inr q => nq q)
example : ¬p ¬q → ¬(p ∧ q)
| Or.inl np, ⟨p,_⟩ => np p
| Or.inr nq, ⟨_,q⟩ => nq q
example : ¬(p ∧ ¬p) :=
λ ⟨p,np⟩ => np p
2025-01-30 17:37:49 +00:00
example : p ∧ ¬q → ¬(p → q) :=
λ ⟨p,nq⟩ ptoq => nq (ptoq p)
example : ¬p → (p → q) :=
λ np p => absurd p np
example : (¬p q) → (p → q)
| (Or.inl np), p => absurd p np
| (Or.inr q), _ => q
2025-01-30 18:04:57 +00:00
example : p False ↔ p :=
Iff.intro (λ porf => Or.elim porf id False.elim) (λ p => Or.inl p)
2025-01-30 17:37:49 +00:00
2025-01-30 18:04:57 +00:00
example : p ∧ False ↔ False :=
Iff.intro (λ ⟨_,f⟩ => f) (λ f => False.elim f)
2025-01-30 17:37:49 +00:00
example : (p → q) → (¬q → ¬p) :=
λ ptoq nq p => absurd (ptoq p) nq