aoc/app/8.hs
2024-12-08 14:30:15 +01:00

73 lines
2.2 KiB
Haskell

{-# LANGUAGE LambdaCase, MultiWayIf #-}
module Main where
import Data.Functor
import Data.Matrix hiding (trace)
import Data.List
import Numeric.Extra
import Debug.Trace
data Pos = Pos { ch :: Char
, ma :: Bool
}
instance Show Pos where
show (Pos '.' True) = show '#'
show (Pos ch _) = show ch
parse :: String -> Matrix Pos
parse = fromLists . (((`Pos` False) <$>) <$>) . lines
positionsOfChar :: Char -> Matrix Pos -> [(Int,Int)]
positionsOfChar c s = zip [1..] (toLists s) >>= \(y,l) -> zip [1..] l >>= \(x,c') ->
if c == ch c' then pure (y,x) else mempty
getMarked :: Matrix Pos -> [(Int,Int)]
getMarked s = zip [1..] (toLists s) >>= \(y,l) -> zip [1..] l >>= \(x,c) ->
if ma c then pure (y,x) else mempty
availableChars :: [Char]
availableChars = ['a'..'z'] ++ ['A'..'Z'] ++ ['0'..'9']
dist :: (Int,Int) -> (Int,Int) -> Float
dist (y,x) (y',x') = sqrt $ intToFloat (y-y')^2 + intToFloat (x-x')^2
line :: (Int,Int) -> (Int,Int) -> (Int,Int) -> Bool
line (y1,x1) (y2,x2) (y3,x3) =
if | x2 == x1 && x3 == x2 -> True
| x2 == x1 || x3 == x2 || x1 == x3 -> False
| otherwise ->
((y2-y1) `div` (x2-x1)) == ((y2-y3) `div` (x2-x3)) &&
((y2-y1) `div` (x2-x1)) == ((y1-y3) `div` (x1-x3))
combo :: Eq a => [a] -> [(a,a)]
combo ps = [(a,b) | a <- ps, b <- ps, a /= b]
getAntinodePos :: (Int,Int) -> [(Int,Int)] -> [(Int,Int)]
getAntinodePos (i,j) ps =
let inbounds (y,x) = and [0 < y, y <= i, 0 < x, x <= j] in
nub $ [ c | (p@(y,x),p'@(y',x')) <- combo ps,
c <- [(y + (y-y'),x+(x-x')),
(y - (y-y'),x+(x-x')),
(y + (y-y'),x-(x-x')),
(y - (y-y'),x-(x-x'))],
inbounds c,
line c p p']
mark :: Matrix Pos -> [(Int,Int)] -> Matrix Pos
mark = foldr (\p@(y,x) s -> let c = getElem y x s in setElem (c {ma = True}) p s)
solve1 :: Matrix Pos -> Int
solve1 s = length . getMarked $
foldr (flip mark . getAntinodePos (nrows s, ncols s) . (`positionsOfChar` s)) s availableChars
solve2 = undefined
main :: IO ()
main = readFile "inputs/8.example" <&> parse >>= \i ->
print (solve1 i)
-- >>
-- print (solve2 i)