{-# LANGUAGE LambdaCase, MultiWayIf #-} module Main where import Data.Functor import Data.Matrix hiding (trace) import Data.List import Numeric.Extra import Debug.Trace data Pos = Pos { ch :: Char , ma :: Bool } instance Show Pos where show (Pos '.' True) = show '#' show (Pos ch _) = show ch parse :: String -> Matrix Pos parse = fromLists . (((`Pos` False) <$>) <$>) . lines positionsOfChar :: Char -> Matrix Pos -> [(Int,Int)] positionsOfChar c s = zip [1..] (toLists s) >>= \(y,l) -> zip [1..] l >>= \(x,c') -> if c == ch c' then pure (y,x) else mempty getMarked :: Matrix Pos -> [(Int,Int)] getMarked s = zip [1..] (toLists s) >>= \(y,l) -> zip [1..] l >>= \(x,c) -> if ma c then pure (y,x) else mempty availableChars :: [Char] availableChars = ['a'..'z'] ++ ['A'..'Z'] ++ ['0'..'9'] dist :: (Int,Int) -> (Int,Int) -> Float dist (y,x) (y',x') = sqrt $ intToFloat (y-y')^2 + intToFloat (x-x')^2 line :: (Int,Int) -> (Int,Int) -> (Int,Int) -> Bool line (y1,x1) (y2,x2) (y3,x3) = if | x2 == x1 && x3 == x2 -> True | x2 == x1 || x3 == x2 || x1 == x3 -> False | otherwise -> ((y2-y1) `div` (x2-x1)) == ((y2-y3) `div` (x2-x3)) && ((y2-y1) `div` (x2-x1)) == ((y1-y3) `div` (x1-x3)) combo :: Eq a => [a] -> [(a,a)] combo ps = [(a,b) | a <- ps, b <- ps, a /= b] getAntinodePos :: (Int,Int) -> [(Int,Int)] -> [(Int,Int)] getAntinodePos (i,j) ps = let inbounds (y,x) = and [0 < y, y <= i, 0 < x, x <= j] in nub $ [ c | (p@(y,x),p'@(y',x')) <- combo ps, c <- [(y + (y-y'),x+(x-x')), (y - (y-y'),x+(x-x')), (y + (y-y'),x-(x-x')), (y - (y-y'),x-(x-x'))], inbounds c, line c p p'] mark :: Matrix Pos -> [(Int,Int)] -> Matrix Pos mark = foldr (\p@(y,x) s -> let c = getElem y x s in setElem (c {ma = True}) p s) solve1 :: Matrix Pos -> Int solve1 s = length . getMarked $ foldr (flip mark . getAntinodePos (nrows s, ncols s) . (`positionsOfChar` s)) s availableChars solve2 = undefined main :: IO () main = readFile "inputs/8.example" <&> parse >>= \i -> print (solve1 i) -- >> -- print (solve2 i)