Tehee
This commit is contained in:
@ -2,14 +2,10 @@
|
||||
module Assignment where
|
||||
|
||||
import Chi
|
||||
import Control.Monad
|
||||
import Control.Monad.Identity
|
||||
import Debug.Trace (trace)
|
||||
import Data.HashMap.Strict (HashMap)
|
||||
import qualified Data.HashMap.Strict as HM
|
||||
import Data.Functor ( (<&>) )
|
||||
import Control.Monad.Identity (Identity(runIdentity))
|
||||
|
||||
-- Task 3
|
||||
subst :: Variable -> Exp -> Exp -> Exp
|
||||
subst var e = \case
|
||||
Apply e1 e2 -> Apply (subst var e e1) (subst var e e2)
|
||||
@ -22,27 +18,32 @@ subst var e = \case
|
||||
substBr :: Br -> Br
|
||||
substBr (Branch c vs e') = Branch c vs $ if var `notElem` vs then subst var e e' else e'
|
||||
|
||||
lookupBranch :: Constructor -> [Br] -> Identity ([Variable], Exp)
|
||||
lookupBranch c [] = error "No matching branch"
|
||||
lookupBranch c ((Branch c' bs e):brs) = if c == c' then pure (bs,e) else lookupBranch c brs
|
||||
|
||||
eval' :: Exp -> Identity Exp
|
||||
eval' = \case
|
||||
e@(Apply e1 e2) -> eval' e1 >>= \case
|
||||
Lambda x e' -> eval' e2 >>= eval' . flip (subst x) e'
|
||||
_ -> error $ "Function was not function in evaluation: " <> show e
|
||||
Const c es -> mapM eval' es <&> Const c
|
||||
Rec x e -> eval' $ subst x (Rec x e) e
|
||||
Case e bs -> eval' e >>= \case
|
||||
Const c vs -> lookupBranch c bs >>= \case
|
||||
(xs,e') ->
|
||||
if length vs /= length xs then error "Not the same amount of arguments in case" else
|
||||
eval' $ foldr (uncurry subst) e' (zip xs vs)
|
||||
e -> error $ "Non const in case: " <> show e
|
||||
x -> pure x
|
||||
|
||||
-- Task 5
|
||||
eval :: Exp -> Exp
|
||||
eval = runIdentity . eval'
|
||||
where
|
||||
eval' :: Exp -> Identity Exp
|
||||
eval' = \case
|
||||
e@(Apply e1 e2) -> eval' e1 >>= \case
|
||||
Lambda x e' -> eval' e2 >>= eval' . flip (subst x) e'
|
||||
_ -> error $ "Function was not function in evaluation: " <> show e
|
||||
Const c es -> mapM eval' es <&> Const c
|
||||
Rec x e -> eval' $ subst x (Rec x e) e
|
||||
Case e bs -> eval' e >>= \case
|
||||
Const c vs -> lookupBranch c bs >>= \case
|
||||
(xs,e') ->
|
||||
if length vs /= length xs then error "Not the same amount of arguments in case" else
|
||||
eval' $ foldr (uncurry subst) e' (zip xs vs)
|
||||
e -> error $ "Non const in case: " <> show e
|
||||
x -> pure x
|
||||
|
||||
lookupBranch :: Constructor -> [Br] -> Identity ([Variable], Exp)
|
||||
lookupBranch c [] = error "No matching branch"
|
||||
lookupBranch c ((Branch c' bs e):brs) =
|
||||
if c == c'
|
||||
then pure (bs,e)
|
||||
else lookupBranch c brs
|
||||
|
||||
|
||||
main :: IO ()
|
||||
main = getLine >>= print . eval . parse
|
||||
|
||||
44
3/assig.org
44
3/assig.org
@ -12,17 +12,18 @@ This time you can make use of a [[http://bnfc.digitalgrammars.com/][BNFC]] speci
|
||||
|
||||
If you want to use Haskell then there is also a wrapper module ([[https://chalmers.instructure.com/courses/36941/file_contents/course%20files/chi/Chi.cf][~Chi.cf~]]) that exports the generated abstract syntax and some definitions that may be useful for testing your code ([[https://chalmers.instructure.com/courses/36941/file_contents/course%20files/chi/Chi.html][documentation]]). The wrapper module comes with a Cabal file ([[https://chalmers.instructure.com/courses/36941/file_contents/course%20files/chi/chi.cabal][~chi.cabal~]]) and a [[https://chalmers.instructure.com/courses/36941/file_contents/course%20files/chi/cabal.project][~cabal.project~]] file that might make installation a little easier. Here is one way to (hopefully) get started:
|
||||
|
||||
- Install all dependencies properly, including suitable versions of GHC and cabal-install ([[https://www.haskell.org/downloads/][installation instructions]]), as well as [[http://bnfc.digitalgrammars.com/][BNFC]].
|
||||
- Put [[https://chalmers.instructure.com/courses/36941/file_contents/course%20files/chi/Chi.cf][~Chi.cf~]], [[https://chalmers.instructure.com/courses/36941/file_contents/course%20files/chi/Chi.hs][~Chi.hs~]], [[https://chalmers.instructure.com/courses/36941/file_contents/course%20files/chi/chi.cabal][~chi.cabal~]] and [[https://chalmers.instructure.com/courses/36941/file_contents/course%20files/chi/cabal.project][~cabal.project~]] in an otherwise empty directory.
|
||||
- Run ~bnfc --haskell Chi.cf~ in that directory.
|
||||
- Now it is hopefully possible to use standard ~cabal~ commands. You could for instance try the following (still in the same directory):
|
||||
- First use cabal repl to start GHCi.
|
||||
- Then issue the following commands at the GHCi command prompt:
|
||||
+ Install all dependencies properly, including suitable versions of GHC and cabal-install ([[https://www.haskell.org/downloads/][installation instructions]]), as well as [[http://bnfc.digitalgrammars.com/][BNFC]].
|
||||
+ Put [[https://chalmers.instructure.com/courses/36941/file_contents/course%20files/chi/Chi.cf][~Chi.cf~]], [[https://chalmers.instructure.com/courses/36941/file_contents/course%20files/chi/Chi.hs][~Chi.hs~]], [[https://chalmers.instructure.com/courses/36941/file_contents/course%20files/chi/chi.cabal][~chi.cabal~]] and [[https://chalmers.instructure.com/courses/36941/file_contents/course%20files/chi/cabal.project][~cabal.project~]] in an otherwise empty directory.
|
||||
+ Run ~bnfc --haskell Chi.cf~ in that directory.
|
||||
+ Now it is hopefully possible to use standard ~cabal~ commands. You could for instance try the following (still in the same directory):
|
||||
+ First use cabal repl to start GHCi.
|
||||
+ Then issue the following commands at the GHCi command prompt:
|
||||
#+begin_src haskell
|
||||
import Chi
|
||||
import Prelude
|
||||
pretty <$> (runDecode (decode =<<
|
||||
asDecoder (code =<< code (parse "\\x. x"))))
|
||||
pretty <$>
|
||||
(runDecode (decode =<< asDecoder
|
||||
(code =<< code (parse "\\x. x"))))
|
||||
#+end_src
|
||||
|
||||
* Exercises
|
||||
@ -49,7 +50,7 @@ rec foo = \m. \n. case m of
|
||||
Give a high-level explanation of the mathematical function in $\mathbb{N} \rightarrow \mathbb{N} \rightarrow \text{Bool}$ that is implemented by this code.
|
||||
|
||||
*** Answer
|
||||
The function will check for equality of the two natural numbers. If they are both $Zero()$, then it returns true, and if both are the successor of a some values, it checks if they are equal. In the other cases, it returns false.
|
||||
The function will check for equality of the two natural numbers. If they are both $\text{Zero}()$, then it returns true, and if both are the successor of a some values, it checks if they are equal. In the other cases, it returns false.
|
||||
|
||||
** (2p)
|
||||
Consider the $\chi$ term /t/ with concrete syntax $C (\lambda z.z)$:
|
||||
@ -77,14 +78,14 @@ If you use the BNFC specification above and Haskell, then the substitution funct
|
||||
Variable -> Exp -> Exp -> Exp
|
||||
#+end_src
|
||||
Test your implementation. Here are some test cases that must work:
|
||||
| Variable | Substituted term | Term | Result |
|
||||
|----------+------------------+---------------------------------------------+---------------------------------------------|
|
||||
| ~x~ | ~Z()~ | ~rec x = x~ | ~rec x = x~ |
|
||||
| ~y~ | $\lambda x.x$ | $\lambda x. (x y)$ | $\lambda x . (x (\lambda x . x))$ |
|
||||
| Variable | Substituted term | Term | Result |
|
||||
|----------+------------------+---------------------------------------------+------------------------------------------------------|
|
||||
| ~x~ | $Z()$ | $\text{rec}\ x = x$ | $\text{rec}\ x = x$ |
|
||||
| ~y~ | $\lambda x.x$ | $\lambda x. (x y)$ | $\lambda x . (x (\lambda x . x))$ |
|
||||
| ~z~ | $C(\lambda z . z)$ | $\text{case}\ z\ \text{of}\ \{ C(z) \rightarrow z \}$ | $\text{case}\ C(\lambda z. z) \ \text{of}\ \{ C(z) \rightarrow z \}$ |
|
||||
|
||||
*** Answer
|
||||
See Assignment.hs
|
||||
See =Assignment.hs=.
|
||||
|
||||
** (1p)
|
||||
Implement multiplication of natural numbers in $\chi$, using the representation of natural numbers given in the $\chi$ specification.
|
||||
@ -117,13 +118,13 @@ If you use the BNFC specification above and Haskell, then the interpreter should
|
||||
Test your implementation, for instance by testing that addition (defined in the [[https://chalmers.instructure.com/courses/36941/file_contents/course%20files/chi/Chi.hs][wrapper module]]) works for some inputs. If addition doesn’t work when your code is tested, then your solution will not be accepted. Also make sure that the following examples are implemented correctly:
|
||||
|
||||
- The following programs should fail to terminate:
|
||||
+ $C() C()$
|
||||
+ $case \lambda x.x of {}$
|
||||
+ $case C() of { C(x) \rightarrow C() }$
|
||||
+ $case C(C()) of { C() \rightarrow C() }$
|
||||
+ $case C(C()) of { C() \rightarrow C(); C(x) \rightarrow x }$
|
||||
+ $case C() of { D() \rightarrow D() }$
|
||||
+ $(\lambda x.\lambda y.x) (rec x = x)$
|
||||
+ $\text{C}()\ \text{C}()$
|
||||
+ $\text{case}\ \lambda x.x\ \text{of}\ {}$
|
||||
+ $\text{case}\ \text{C}()\ \text{of}\ { \text{C}(x) \rightarrow \text{C}() }$
|
||||
+ $\text{case}\ \text{C}(\text{C}())\ \text{of}\ { \text{C}() \rightarrow \text{C}() }$
|
||||
+ $\text{case}\ \text{C}(\text{C}())\ \text{of}\ { \text{C}() \rightarrow \text{C}(); \text{C}(x) \rightarrow x }$
|
||||
+ $\text{case} \text{C}()\ \text{of}\ { \text{D}() \rightarrow \text{D}() }$
|
||||
+ $(\lambda x.\lambda y.x) (\text{rec}\ x = x)$
|
||||
- The following programs should terminate with specific results:
|
||||
+ The program $case C(D(),E()) of { C(x, x) \rightarrow x }$ should terminate with the value $E()$.
|
||||
+ The program $case C(\lambda x.x, Zero()) of { C(f, x) \rightarrow f x }$ should terminate with the value $Zero()$.
|
||||
@ -133,3 +134,4 @@ Test your implementation, for instance by testing that addition (defined in the
|
||||
Note that implementing a call-by-value semantics properly in a language like Haskell, which is by default non-strict, can be tricky. However, you will not fail if the only problem with your implementation is that some programs that should fail to terminate instead terminate with a “reasonable” result.
|
||||
|
||||
*** Answer
|
||||
See =Assignment.hs=.
|
||||
|
||||
Reference in New Issue
Block a user