{-# OPTIONS --no-import-sorts #-} open import Agda.Primitive renaming (Set to Type) open import Agda.Builtin.Nat open import Agda.Builtin.List data Bottom : Type where ¬ : Type → Type ¬ A = A → Bottom Rel : Type → Type → Type₁ Rel A B = A → B → Type data Σ (A : Type) (B : A -> Type) : Type where pair : (a : A) -> (b : B a) -> Σ A B ∃ : {A : Type} (B : A → Type) → Type ∃ {A} B = Σ A B record _×_ (A B : Type) : Type where field fst : A snd : B data _∪_ (A B : Type) : Type where inl : A → A ∪ B inr : B → A ∪ B data Formula : Type where ⊥ : Formula atom : Nat → Formula ∼_ : Formula → Formula ◇_ : Formula → Formula □_ : Formula → Formula _∧_ : Formula → Formula → Formula _∨_ : Formula → Formula → Formula _⇒_ : Formula → Formula → Formula infixr 4 _⇒_ variable X Y Z : Formula _⇔_ : Formula → Formula → Formula X ⇔ Y = (X ⇒ Y) ∧ (Y ⇒ X) ⊤ : Formula ⊤ = ∼ ⊥ Context : Type Context = List Formula variable Γ : Context infixl 10 _,_ pattern _,_ Γ X = X ∷ Γ data _∈_ {A : Type} : A → List A → Type where zero : (x : A) (xs : List A) → x ∈ (x ∷ xs) succ : {y : A} (x : A) (xs : List A) → (x ∈ xs) → (x ∈ (y ∷ xs)) infixr 2 _⊢_ data _⊢_ : Context → Formula → Type where var : X ∈ Γ → Γ ⊢ X ∧ᵢ : Γ ⊢ X → Γ ⊢ Y → Γ ⊢ X ∧ Y ∧ₑ₁ : Γ ⊢ X ∧ Y → Γ ⊢ X ∧ₑ₂ : Γ ⊢ X ∧ Y → Γ ⊢ Y ∨ᵢ₁ : Γ ⊢ X → Γ ⊢ X ∨ Y ∨ᵢ₂ : Γ ⊢ Y → Γ ⊢ X ∨ Y ∨ₑ : Γ ⊢ X ∨ Y → Γ , X ⊢ Z → Γ , Y ⊢ Z → Γ ⊢ Z mp : Γ ⊢ X ⇒ Y → Γ ⊢ X → Γ ⊢ Y ⇒ᵢ : Γ , X ⊢ Y → Γ ⊢ X ⇒ Y ¬ᵢ : Γ , X ⊢ ⊥ → Γ ⊢ ∼ X ¬ₑ : Γ ⊢ X → Γ ⊢ ∼ X → Γ ⊢ ⊥ -- TODO: entailments for ◇ and □ record M (W : Type) : Type₁ where field R : Rel W W L : W → List Nat infix 2 _,_⊩_ _,_⊩_ : {W : Type} (Model : M W) (x : W) (p : Formula) → Type Model , x ⊩ ⊥ = Bottom Model , x ⊩ atom n = n ∈ M.L Model x Model , x ⊩ (∼ p) = ¬ (Model , x ⊩ p) Model , x ⊩ (p ∧ q) = (Model , x ⊩ p) × (Model , x ⊩ q) Model , x ⊩ (p ∨ q) = (Model , x ⊩ p) ∪ (Model , x ⊩ q) Model , x ⊩ p ⇒ q = Model , x ⊩ p → Model , x ⊩ q Model , x ⊩ (□ p) = ∀ y → M.R Model x y → Model , y ⊩ p Model , x ⊩ (◇ p) = ∃ λ y → M.R Model x y → Model , y ⊩ p data R : Nat → Nat → Type where zeroone : R 0 1 zerotwo : R 0 2 onetwo : R 1 2 ExampleModel : M Nat ExampleModel .M.R = R ExampleModel .M.L 0 = 0 ∷ [] ExampleModel .M.L 1 = 1 ∷ 2 ∷ [] ExampleModel .M.L 2 = 0 ∷ 2 ∷ [] ExampleModel .M.L _ = [] Example : ExampleModel , 0 ⊩ □ (atom 2) Example y zeroone = succ 2 (2 ∷ []) (zero 2 []) Example y zerotwo = succ 2 (2 ∷ []) (zero 2 []) Example2 : ExampleModel , 0 ⊩ ◇ (atom 1) Example2 = pair 1 (λ _ → zero 1 (2 ∷ []))