Tehee
This commit is contained in:
17
mambo.agda
17
mambo.agda
@@ -214,8 +214,8 @@ weak-modal (⊥ₑ x) x₁ = ⊥ₑ (weak-modal x x₁)
|
|||||||
weak-modal (□ᵢ x) x₁ = □ᵢ (weak x x₁)
|
weak-modal (□ᵢ x) x₁ = □ᵢ (weak x x₁)
|
||||||
weak-modal (□ₑ x x₂) x₁ = □ₑ (weak-modal x x₁) (weak-modal x₂ (inBoth x₁))
|
weak-modal (□ₑ x x₂) x₁ = □ₑ (weak-modal x x₁) (weak-modal x₂ (inBoth x₁))
|
||||||
|
|
||||||
cut : Δ / Γ ⊢ A → Δ / Γ' ++ (Γ , A) ⊢ B → Δ / Γ' ++ Γ ⊢ B
|
cut : (Γ' : Context) → Δ / Γ ⊢ A → Δ / Γ' ++ (Γ , A) ⊢ B → Δ / Γ' ++ Γ ⊢ B
|
||||||
cut = {!!}
|
cut Γ' x x₁ = {!!}
|
||||||
|
|
||||||
cut-modal : Δ / Γ ⊢ A → Δ' ++ (Δ , A) / Γ ⊢ B → Δ' ++ Δ / Γ ⊢ B
|
cut-modal : Δ / Γ ⊢ A → Δ' ++ (Δ , A) / Γ ⊢ B → Δ' ++ Δ / Γ ⊢ B
|
||||||
cut-modal = {!!}
|
cut-modal = {!!}
|
||||||
@@ -232,13 +232,16 @@ MTSym {A} {B} = ⇒ᵢ (⇒ᵢ (¬ᵢ (¬ₑ (var (succ (∼ B) ([] , (A ⇒ B)
|
|||||||
|
|
||||||
DedSym : Δ / Γ ⊢ A ⇒ B → Δ / Γ , A ⊢ B
|
DedSym : Δ / Γ ⊢ A ⇒ B → Δ / Γ , A ⊢ B
|
||||||
DedSym {Δ} {Γ} {A} {B} (var x) = mp (var (succ (A ⇒ B) Γ x)) (var (zero A Γ))
|
DedSym {Δ} {Γ} {A} {B} (var x) = mp (var (succ (A ⇒ B) Γ x)) (var (zero A Γ))
|
||||||
DedSym {Δ} {Γ} {A} {B} (mp x x₁) = {!!}
|
DedSym {Δ} {Γ} {A} {B} (mp x x₁) = mp (mp (weak x λ {X = X₁} → succ X₁ Γ) (weak x₁ (λ {X = X₁} → succ X₁ Γ))) (var (zero A Γ))
|
||||||
DedSym {Δ} {Γ} {A} {B} (∧ₑ₁ x) = {!!}
|
DedSym {Δ} {Γ} {A} {B} (∧ₑ₁ x) = mp (weak (∧ₑ₁ x) (λ {X} → succ X Γ)) (var (zero A Γ))
|
||||||
DedSym {Δ} {Γ} {A} {B} (∧ₑ₂ x) = {!!}
|
DedSym {Δ} {Γ} {A} {B} (∧ₑ₂ x) = mp (weak (∧ₑ₂ x) (λ {X = X₁} → succ X₁ Γ)) (var (zero A Γ))
|
||||||
DedSym {Δ} {Γ} {A} {B} (∨ₑ x x₁ x₂) = {!!}
|
DedSym {Δ} {Γ} {A} {B} (∨ₑ x x₁ x₂) = mp (weak (∨ₑ x x₁ x₂) λ {X = X₁} → succ X₁ Γ) (var (zero A Γ))
|
||||||
DedSym {Δ} {Γ} {A} {B} (⇒ᵢ x) = x
|
DedSym {Δ} {Γ} {A} {B} (⇒ᵢ x) = x
|
||||||
DedSym {Δ} {Γ} {A} {B} (⊥ₑ x) = weak (⊥ₑ x) λ {X} → succ X Γ
|
DedSym {Δ} {Γ} {A} {B} (⊥ₑ x) = weak (⊥ₑ x) λ {X} → succ X Γ
|
||||||
DedSym {Δ} {Γ} {A} {B} (□ₑ x x₁) = {!!}
|
DedSym {Δ} {Γ} {A} {B} (□ₑ x x₁) = mp (weak (□ₑ x x₁) (λ {X = X₁} → succ X₁ Γ)) (var (zero A Γ))
|
||||||
|
|
||||||
|
DedSymInv : Δ / Γ , A ⊢ B → Δ / Γ ⊢ A ⇒ B
|
||||||
|
DedSymInv {Δ} {Γ} {A} {B} x = ⇒ᵢ x
|
||||||
|
|
||||||
ExampleSyn : [] / [] ⊢ □ X ⇒ □ (Y ⇒ X)
|
ExampleSyn : [] / [] ⊢ □ X ⇒ □ (Y ⇒ X)
|
||||||
ExampleSyn {X} {Y} = ⇒ᵢ (□ₑ (var (zero (□ X) [])) (□ᵢ (⇒ᵢ (var (succ X ([] , X) (zero X []))))))
|
ExampleSyn {X} {Y} = ⇒ᵢ (□ₑ (var (zero (□ X) [])) (□ᵢ (⇒ᵢ (var (succ X ([] , X) (zero X []))))))
|
||||||
|
|||||||
Reference in New Issue
Block a user