variable (p q r : Prop) -- commutativity of ∧ and ∨ example : p ∧ q ↔ q ∧ p := ⟨λ ⟨p,q⟩ => ⟨q,p⟩, λ ⟨q,p⟩ => ⟨p,q⟩⟩ example : p ∨ q ↔ q ∨ p := ⟨λ | Or.inl p => Or.inr p | Or.inr q => Or.inl q, λ | Or.inl q => Or.inr q | Or.inr p => Or.inl p⟩ -- associativity of ∧ and ∨ example : (p ∧ q) ∧ r ↔ p ∧ (q ∧ r) := ⟨λ ⟨⟨p,q⟩,r⟩ => ⟨p,⟨q,r⟩⟩, λ ⟨p,⟨q,r⟩⟩ => ⟨⟨p,q⟩,r⟩⟩ example : (p ∨ q) ∨ r ↔ p ∨ (q ∨ r) := ⟨λ | Or.inr r => Or.inr (Or.inr r) | Or.inl (Or.inr q) => Or.inr (Or.inl q) | Or.inl (Or.inl p) => Or.inl p, λ | Or.inl p => Or.inl (Or.inl p) | Or.inr (Or.inl q) => Or.inl (Or.inr q) | Or.inr (Or.inr r) => Or.inr r⟩ -- distributivity example : p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) := ⟨λ | ⟨p, Or.inl q⟩ => Or.inl ⟨p,q⟩ | ⟨p, Or.inr r⟩ => Or.inr ⟨p,r⟩, λ | Or.inl ⟨p,q⟩ => ⟨p,Or.inl q⟩ | Or.inr ⟨p,r⟩ => ⟨p,Or.inr r⟩⟩ example : p ∨ (q ∧ r) ↔ (p ∨ q) ∧ (p ∨ r) := ⟨λ | Or.inl p => ⟨Or.inl p, Or.inl p⟩ | Or.inr ⟨q,r⟩ => ⟨Or.inr q, Or.inr r⟩, λ | ⟨Or.inr q, Or.inr r⟩ => Or.inr ⟨q,r⟩ | ⟨Or.inl p, _⟩ => Or.inl p | ⟨ _, Or.inl p⟩ => Or.inl p⟩ -- other properties example : (p → (q → r)) ↔ (p ∧ q → r) := ⟨λ f ⟨p,q⟩ => f p q,λ f p q => f ⟨p,q⟩⟩ example : ((p ∨ q) → r) ↔ (p → r) ∧ (q → r) := ⟨ λ f => ⟨λ p => f (Or.inl p), λ q => f (Or.inr q)⟩, λ |⟨f, _⟩, Or.inl p => f p |⟨_, g⟩, Or.inr q => g q⟩ example : ¬(p ∨ q) ↔ ¬p ∧ ¬q := ⟨λ f => ⟨λ p => f (Or.inl p), λ q => f (Or.inr q)⟩, λ | ⟨np, _⟩, Or.inl p => np p | ⟨_ ,nq⟩, Or.inr q => nq q⟩ example : ¬p ∨ ¬q → ¬(p ∧ q) | Or.inl np, ⟨p,_⟩ => np p | Or.inr nq, ⟨_,q⟩ => nq q example : ¬(p ∧ ¬p) := λ ⟨p,np⟩ => np p example : p ∧ ¬q → ¬(p → q) := λ ⟨p,nq⟩ ptoq => nq (ptoq p) example : ¬p → (p → q) := λ np p => absurd p np example : (¬p ∨ q) → (p → q) | (Or.inl np), p => absurd p np | (Or.inr q), _ => q example : p ∨ False ↔ p := ⟨λ h => Or.elim h id False.elim, λ p => Or.inl p⟩ example : p ∧ False ↔ False := ⟨λ ⟨_,f⟩ => f, λ f => False.elim f⟩ example : (p → q) → (¬q → ¬p) := λ f nq p => absurd (f p) nq