40 lines
1.2 KiB
Haskell
40 lines
1.2 KiB
Haskell
{-# LANGUAGE LambdaCase #-}
|
|
module Main where
|
|
|
|
import Data.Functor
|
|
import Data.Matrix hiding (trace)
|
|
import Data.List
|
|
import Debug.Trace
|
|
|
|
parse :: String -> Matrix Char
|
|
parse = fromLists . lines
|
|
|
|
getGroup :: (Int,Int) -> Matrix Char -> [(Int,Int)] -> [(Int,Int)]
|
|
getGroup p@(i,j) s v
|
|
| p `elem` v = v
|
|
| otherwise = let e = getElem i j s in
|
|
nub . (p:) $ filter((== Just e) . flip (uncurry safeGet) s) [(i,j+1),(i,j-1),(i+1,j),(i-1,j)] >>= \p' -> getGroup p' s (p:v)
|
|
where
|
|
|
|
groups :: Matrix Char -> [[(Int,Int)]]
|
|
groups s = nub $ go [(i,j) | i <- [1 .. nrows s], j <- [1 .. ncols s]] []
|
|
where go :: [(Int,Int)] -> [[(Int,Int)]] -> [[(Int,Int)]]
|
|
go [] v = v
|
|
go (x:xs) v
|
|
| any (x `elem`) v = go xs v
|
|
| otherwise = go xs (getGroup x s []:v)
|
|
|
|
perimeter :: [(Int,Int)] -> Int
|
|
perimeter s = length $ s >>= \(i,j) -> [(i,j+1),(i,j-1),(i+1,j),(i-1,j)] \\ s
|
|
|
|
solve1 :: Matrix Char -> Int
|
|
solve1 s = let g = groups s; p = perimeter <$> g in sum $ zipWith (*) (length <$> g) p
|
|
|
|
solve2 :: Matrix Char -> Int
|
|
solve2 = undefined
|
|
|
|
main :: IO ()
|
|
main = readFile "inputs/12.example" <&> parse >>= \i ->
|
|
print (solve1 i) >>
|
|
print (solve2 i)
|