Added templates and some code done
This commit is contained in:
12
1FundamentalGroup/Preambles/P0.agda
Normal file
12
1FundamentalGroup/Preambles/P0.agda
Normal file
@@ -0,0 +1,12 @@
|
||||
module 1FundamentalGroup.Preambles.P0 where
|
||||
|
||||
open import Cubical.Data.Empty using (⊥) public
|
||||
open import Cubical.Data.Unit renaming ( Unit to ⊤ ) public
|
||||
open import Cubical.Data.Bool renaming ( elim to Bool-elim ) public
|
||||
open import Cubical.Foundations.Prelude
|
||||
renaming ( subst to endPt
|
||||
; transport to pathToFun
|
||||
) public
|
||||
open import Cubical.Foundations.Isomorphism renaming ( Iso to _≅_ ) public
|
||||
open import Cubical.Foundations.Path public
|
||||
open import Cubical.HITs.S1 renaming ( elim to S¹-elim ) public
|
||||
12
1FundamentalGroup/Preambles/P1.agda
Normal file
12
1FundamentalGroup/Preambles/P1.agda
Normal file
@@ -0,0 +1,12 @@
|
||||
module 1FundamentalGroup.Preambles.P1 where
|
||||
|
||||
open import Cubical.HITs.S1 using (S¹ ; base ; loop) public
|
||||
open import Cubical.Data.Nat using (ℕ ; suc ; zero) public
|
||||
open import Cubical.Data.Int using (ℤ ; pos ; negsuc ; -_) public
|
||||
open import Cubical.Data.Empty public
|
||||
open import Cubical.Foundations.Prelude
|
||||
renaming ( subst to endPt
|
||||
; transport to pathToFun
|
||||
) public
|
||||
open import Cubical.Foundations.Isomorphism renaming (Iso to _≅_) public
|
||||
open import 1FundamentalGroup.Quest0Solutions using ( Refl ; Refl≢loop ) public
|
||||
19
1FundamentalGroup/Preambles/P2.agda
Normal file
19
1FundamentalGroup/Preambles/P2.agda
Normal file
@@ -0,0 +1,19 @@
|
||||
module 1FundamentalGroup.Preambles.P2 where
|
||||
|
||||
open import Cubical.Data.Nat public
|
||||
open import Cubical.Data.Int using (ℤ ; pos ; negsuc ; -_) public
|
||||
open import Cubical.Foundations.Isomorphism renaming (Iso to _≅_) public
|
||||
open import Cubical.Data.Empty using (⊥) public
|
||||
open import Cubical.Data.Unit renaming (Unit to ⊤) public
|
||||
open import Cubical.Foundations.Prelude
|
||||
renaming ( subst to endPt
|
||||
; transport to pathToFun
|
||||
) public
|
||||
open import Cubical.HITs.S1 using (S¹ ; base ; loop) public
|
||||
open import 1FundamentalGroup.Quest1Solutions public
|
||||
|
||||
refl∙refl : {A : Type} {a : A} → refl ∙ refl ≡ refl {x = a}
|
||||
refl∙refl {a = a} = sym (λ i j → compPath-filler (refl {x = a}) refl i j)
|
||||
|
||||
symRefl : {A : Type} {a : A} → sym refl ≡ refl {x = a}
|
||||
symRefl = refl
|
||||
33
1FundamentalGroup/Preambles/P3.agda
Normal file
33
1FundamentalGroup/Preambles/P3.agda
Normal file
@@ -0,0 +1,33 @@
|
||||
module 1FundamentalGroup.Preambles.P3 where
|
||||
|
||||
open import Cubical.Foundations.Prelude public
|
||||
renaming (transport to pathToFun ;
|
||||
transportRefl to pathToFunRefl ;
|
||||
subst to endPt) public
|
||||
open import Cubical.Foundations.Isomorphism renaming (Iso to _≅_) public
|
||||
open import Cubical.Foundations.GroupoidLaws
|
||||
renaming (lCancel to sym∙ ; rCancel to ∙sym ; lUnit to Refl∙ ; rUnit to ∙Refl) public
|
||||
open import Cubical.Foundations.Path public
|
||||
open import Cubical.Data.Int using (ℤ ; isSetℤ) public
|
||||
open import Cubical.Data.Nat public
|
||||
open import Cubical.HITs.S1 using ( S¹ ; base ; loop ) public
|
||||
open import 1FundamentalGroup.Quest1Solutions public
|
||||
|
||||
open ℤ public
|
||||
|
||||
PathD : {A0 A1 : Type} (A : A0 ≡ A1) (x : A0) (y : A1) → Type
|
||||
PathD A x y = pathToFun A x ≡ y
|
||||
|
||||
endPtRefl : {A : Type} {x : A} (B : A → Type) → endPt B (refl {x = x}) ≡ λ b → b
|
||||
endPtRefl {x = x} B = funExt (λ b → substRefl {B = B} b)
|
||||
|
||||
outOfS¹P : (B : S¹ → Type) (b : B base) → PathP (λ i → B (loop i)) b b → (x : S¹) → B x
|
||||
outOfS¹P B b p base = b
|
||||
outOfS¹P B b p (loop i) = p i
|
||||
|
||||
outOfS¹D : (B : S¹ → Type) (b : B base) → PathD (λ i → B (loop i)) b b → (x : S¹) → B x
|
||||
outOfS¹D B b p x = outOfS¹P B b (_≅_.inv (PathPIsoPath (λ i → B (loop i)) b b) p) x
|
||||
|
||||
outOfS¹DBase : (B : S¹ → Type) (b : B base)
|
||||
(p : PathD (λ i → B (loop i)) b b) → outOfS¹D B b p base ≡ b
|
||||
outOfS¹DBase B b p = refl
|
||||
Reference in New Issue
Block a user