Compare commits
2 Commits
8a26a61b6f
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
| c7928ec703 | |||
| df5c80b5df |
@@ -24,7 +24,7 @@ The Turing machine is the one described by the following:
|
||||
- States: $S = \{ s_0, s_1 \}$
|
||||
- Initial state: $s_0$
|
||||
- Input alphabet: $\{c_1,c_2\}$
|
||||
- Tape alphabet: $\{\text{\textvisiblespace}},c_1,c_2\}$
|
||||
- Tape alphabet: $\{\text{\textvisiblespace},c_1,c_2\}$
|
||||
- Transition function:
|
||||
+ $\delta (s_0, c_1) = (s_1,c_1,R)$
|
||||
+ $\delta (s_0, c_2) = (s_1,c_2,R)$
|
||||
@@ -39,7 +39,7 @@ Implement a Turing machine interpreter using $\chi$.
|
||||
|
||||
The interpreter should be a closed $\chi$ expression. If we denote this expression by run, then it should satisfy the following property (but you do not have to prove that it does):
|
||||
+ For every Turing machine tm and input string $xs \in \text{List}\ \{0, 1\}$ the following equation should hold:
|
||||
\[ \llbracket \text{apply}\ (\text{apply}\ \text{\textit{run}}\ \ulcorner \text{tm} \urcorner) \ulcorner xs \urcorner \rrbracket = \ulcorner \llbracket \text{tm} \rrbracket \text{xs} \urcorner \]
|
||||
\[ \llbracket \text{apply}\ (\text{apply}\ \text{\textit{run}}\ \ulcorner \text{tm} \urcorner) \ulcorner xs \urcorner \rrbracket = \ulcorner \llbracket \text{tm} \rrbracket\ \text{xs} \urcorner \]
|
||||
(The $\llbracket \_ \rrbracket$ brackets to the left stand for the $\chi$ semantics, and the $\llbracket \_ \rrbracket$ brackets to the right stand for the Turing machine semantics.)
|
||||
|
||||
Turing machines should be represented in the following way:
|
||||
@@ -57,8 +57,13 @@ The input and output strings should use the usual representation of lists, with
|
||||
Please test that addition, implemented as in Tutorial 5, Exercise 6 (with 0 instead of #), works as it should when run on your Turing machine interpreter. A testing procedure that you can use is included in the wrapper module (documentation).
|
||||
|
||||
** Answer
|
||||
|
||||
See =Turing.hs=
|
||||
* (2p)
|
||||
Prove that every Turing-computable partial function in $\mathbb{N} \rightharpoonup \mathbb{N}$ is also $\chi$ computable. You can assume that the definition of “Turing-computable” uses Turing machines of the kind used in the previous exercise.
|
||||
|
||||
Hint: Use the interpreter from the previous exercise. Do not forget to convert the input and output to the right formats.
|
||||
** Answer
|
||||
We know that we can construct an interpreter for Turing machines, and a translation of $\mathbb{N}$ to the language a Turing machine.
|
||||
We also know that one can construct an interpreter in the form of a Turing machine of $\chi$, and the opposite.
|
||||
This means that a partial function can be translated from $\chi$ to a Turing machine.
|
||||
So, given a partial function, one can translate it to a Turing machine, and translate the input, and run the implemented Turing interpreter from the last task, and then translate the result back into $\chi$.
|
||||
|
||||
@@ -1,4 +1,87 @@
|
||||
-- |
|
||||
{-# Language LambdaCase, Strict #-}
|
||||
|
||||
module Interpreter.Turing where
|
||||
|
||||
import Chi
|
||||
import Interpreter.Haskell -- from assignment 3
|
||||
|
||||
equalExp :: Exp
|
||||
equalExp = parse
|
||||
"rec equal = \\m. \\n. case m of \
|
||||
\ { Zero() -> case n of { Blank() -> False(); Zero() -> True(); Suc(n) -> False() } \
|
||||
\ ; Suc(m) -> case n of { Blank() -> False(); Zero() -> False(); Suc(n) -> equal m n } \
|
||||
\ ; Blank() -> case n of { Blank() -> True(); Zero() -> False(); Suc(n) -> False() } \
|
||||
\ }"
|
||||
|
||||
lookupExp :: Exp
|
||||
lookupExp =
|
||||
subst (Variable "equal") equalExp $ parse
|
||||
"\\s. \\head. rec lookup = \\rules. case rules of \
|
||||
\ { Nil() -> Done() \
|
||||
\ ; Cons(x,xs) -> case x of \
|
||||
\ { Rule(s1, x1, s2, x2, d) -> case equal s s1 of \
|
||||
\ { True() -> case equal head x1 of \
|
||||
\ { True() -> Trip(s2,x2,d)\
|
||||
\ ; False() -> lookup xs \
|
||||
\ } \
|
||||
\ ; False() -> lookup xs \
|
||||
\ } \
|
||||
\ }\
|
||||
\ } \
|
||||
\ "
|
||||
|
||||
joinExp :: Exp
|
||||
joinExp = parse
|
||||
"rec join = \\xs. \\ys. case xs of \
|
||||
\ { Nil() -> ys \
|
||||
\ ; Cons(x,xs) -> join xs Cons(x,ys) \
|
||||
\ }"
|
||||
|
||||
appendExp :: Exp
|
||||
appendExp = parse
|
||||
"rec append = \\xs. \\ys. case xs of \
|
||||
\ { Nil() -> ys \
|
||||
\ ; Cons(x,xs) -> Cons(x,append xs ys) \
|
||||
\ }"
|
||||
|
||||
reverseExp :: Exp
|
||||
reverseExp =
|
||||
subst (Variable "append") appendExp $ parse
|
||||
"rec reverse = \\xs. case xs of \
|
||||
\ { Nil() -> Nil() \
|
||||
\ ; Cons(x,xs) -> append xs Cons(x,Nil())\
|
||||
\ }"
|
||||
|
||||
removeLastBlanksExp :: Exp
|
||||
removeLastBlanksExp = parse
|
||||
"rec removeLastBlanks = \\xs. case xs of \
|
||||
\ { Nil() -> Nil() \
|
||||
\ ; Cons(x,xs) -> case x of \
|
||||
\ { Blank() -> removeLastBlanks xs \
|
||||
\ ; Zero() -> Cons(x,xs) \
|
||||
\ ; Suc(n) -> Cons(x,xs) \
|
||||
\ } \
|
||||
\ }\
|
||||
\ "
|
||||
|
||||
runExp :: Exp
|
||||
runExp =
|
||||
subst (Variable "removeLastBlanks") removeLastBlanksExp .
|
||||
subst (Variable "reverse") reverseExp .
|
||||
subst (Variable "join") joinExp .
|
||||
subst (Variable "lookup") lookupExp $ parse
|
||||
"(rec run = \\rev. \\tm. \\tape. case tm of \
|
||||
\ { TM(state,deltas) -> case tape of \
|
||||
\ { Nil() -> run rev TM(state,deltas) Cons(Blank(), Nil()) \
|
||||
\ ; Cons(head,xs) -> case lookup state head deltas of \
|
||||
\ { Done() -> join rev (reverse (removeLastBlanks (reverse tape))) \
|
||||
\ ; Trip(s2, x2, d) -> case d of \
|
||||
\ { L() -> case rev of \
|
||||
\ { Nil() -> run Nil() TM(s2,deltas) Cons(x2,xs) \
|
||||
\ ; Cons(y,ys) -> run ys TM(s2,deltas) Cons(y,Cons(x2,xs)) \
|
||||
\ } \
|
||||
\ ; R() -> run Cons(x2,rev) TM(s2,deltas) xs \
|
||||
\ } \
|
||||
\ } \
|
||||
\ } \
|
||||
\ }) Nil()"
|
||||
|
||||
@@ -26,6 +26,7 @@ library
|
||||
PrintChi
|
||||
Interpreter.Haskell
|
||||
Interpreter.Self
|
||||
Interpreter.Turing
|
||||
hs-source-dirs:
|
||||
.
|
||||
|
||||
|
||||
5
5.org
5
5.org
@@ -28,7 +28,7 @@ Which means
|
||||
&= \llbracket \underline{\text{has-fixpoint}}\ \ulcorner \lambda n. ((\lambda \_. n)\ p) \urcorner \rrbracket \\
|
||||
&= \ulcorner \text{has-fixpoint}(\lambda n. ((\lambda \_. n)\ p)) \urcorner \\
|
||||
&= \begin{cases}
|
||||
\ulcorner \text{true} \urcorner &\quad \text{if}\ \exists v \in Exp. \llbracket p \rrbracket = v,\\
|
||||
\ulcorner \text{true} \urcorner &\quad \text{if}\ \exists v \in Exp. \llbracket p \rrbracket = v\ \text{(due to strictness in application)},\\
|
||||
\ulcorner \text{false} \urcorner &\quad otherwise
|
||||
\end{cases}
|
||||
\end{align*}
|
||||
@@ -138,7 +138,8 @@ Let a two-tape Turing machine be defined by the following:
|
||||
\UnaryInfC{$\text{\textvisiblespace} \notin \Sigma$}
|
||||
\AxiomC{$\Gamma$ is a finite set}
|
||||
\UnaryInfC{$\Sigma \cup \{\text{\textvisiblespace}\} \subseteq \Gamma$}
|
||||
\AxiomC{$\delta \in S \times \Gamma \times \Gamma \rightharpoonup S \times (\Gamma \times \{L,R\}) \times (\Gamma \times \{L,R\})$}
|
||||
\AxiomC{$\delta \in S \times \Gamma \times \Gamma \rightharpoonup$}
|
||||
\UnaryInfC{$S \times (\Gamma \times \{L,R\}) \times (\Gamma \times \{L,R\})$}
|
||||
\alwaysSingleLine
|
||||
\QuaternaryInfC{$(S,s_0, \Sigma, \Gamma, \delta) \in \text{TM2}$}
|
||||
\end{prooftree}
|
||||
|
||||
Reference in New Issue
Block a user